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A number of physical problems can be described by a complex dif- 
ferential equation wi th an undetermined coefficient appearing as an 
explicit term. The problem is usually encountered in diffusion-reaction 
systems and in these cases the unknown parameter is the gradient at the 
diffusing interface. The problem is stiff and difficult to solve. This paper 
describes a new method for the solution of such problems. The proce- 
dure is based on the boundary integral element concepts where both 
the dependent variable and its gradient become the primary variables. 
This permits a direct iterative solution to this problem. Numerical 
studies presented here show that the proposed solution method is very 
accurate and rapidly convergent. Two cases studies involving gas 
absorption with chemical reaction are also presented. © 1992 Academic 
Press, Inc. 

1. INTRODUCTION AND PROBLEM SPECIFICATION 

The focus of this paper is to develop an efficient numerical 
solution method to a certain class of boundary value 
ordinary differential equations in which an undetermined 
parameter appears directly as a coefficient in the equation. 
This parameter is usually the derivative or the gradient of 
the dependent variable at one of the boundaries. This makes 
the numerical solution procedure a complicated task. A 
representative problem of this type will be first formulated 
and a new method using boundary integral concepts will be 
demonstrated for the numerical solution to the problem. A 
number of physical processes where such equations appear 
will be mentioned and two case studies presented for the 
system of absorption of a gas accompanied by fast reaction 
in a liquid containing a reactive species. 

The differential equation considered here is of the form 

d•c= f(c, x, p~), (1) 

where c is the dependent variable, x is the independent 
variable, f is a nonlinear function of c and x while p~ is the 
undetermined parameter defined as the derivative of c at 
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x = 0. The variable p will be used here to denote the 
derivative or the gradient of the dependent variable: 

de 
P=~xx (2) 

and Pt will denote the gradient at x = 0, 

P l  ----- , ( 3 )  
x = 0  

where the subscript 1 (rather than zero) has been used in 
conformity with the notation to be used in later sections and 
arises due to the reason that x = 0 will be denoted as nodal 
point 1 in the discretization scheme. Thus the differential 
Eq. (1) itself contains an undetermined parameter, Pa, 
which can be obtained only after a solution satisfying the 
boundary conditions has been found to the problem. 

The problem considered here is of a boundary value type. 
The range of variable x can be taken to be from 0 to 1 for 
illustration purposes without loss of generality and the 
boundary conditions may be stated in a general form as 

At x=O, a l p + a 2 c - a 3 = O  (4) 

and 

At x = l ,  b tp+b2c-b3=O,  (5) 

where al,  a2, a3 and b a, b 2, b 3 a r e  specified constants. 

2. SCOPE AND SIGNIFICANCE 

The above problem, although very specific, is repre- 
sentative of the class of problems where an undetermined 
parameter appears as an explicit term. The problem has 
direct physical significance in a variety of situations and a 
few examples will be mentioned here. The problem occurs 
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very often when one is dealing with diffusion-reaction 
problems with complex kinetics involving more than one 
species. The variable c will now represent the concentration 
of the diffusing species and this terminology will be used 
subsequently in the paper. The gradient pl is then directly 
proportional to the flux of the diffusing species and is very 
often the primary quantity of interest. An archetypical 
example is in gas absorption in a medium containing a 
reacting liquid (see Danckwerts [1], Doraiswamy and 
Sharma [2] for details of a large number of practical 
examples of processes of this type). For this case two 
examples will be presented in a later section where the 
developments leading to Eq. (1) will be presented in some 
detail in order to gain further understanding of this problem. 
The problem also finds applications in a variety of related 
areas such as transport phenomena in membranes 
containing reacting carriers (Roberts and Friedlander [3 ]), 
phase transfer catalysis (Melville and Goddard [4]; 
Melville and Yortsos [5]), carrier mediated transport 
(Goddard [-6]; Schultz et al. [7]), and combustion pro- 
cesses. 

Some comments on the nature of the solution for these 
types of problems for rapid reactions is in order here. The 
reaction will now be confined to a thin boundary layer 
usually near the interface. The reaction rate is close to zero 
elsewhere leading to a situation where equilibrium condi- 
tions can be assumed outside the boundary layer. The 
boundary layer associated with this problem is therefore 
often referred to as a non-equilibrium boundary layer 
(NEBL). The concentration and its gradient are rapidly 
changing within the NEBL leading to a stiff differential 
equation. The added complication is due to the undeter- 
mined parameter, p ~. The region where the reaction is close 
to equilibrium is known as the outer region and here the 
concentration and/or the gradient would either change 
very modestly or remain constant. The above discussion 
provides some picture of the nature of the solution and also 
emphasizes the complexities associated with the numerical 
solution to the problem. 

Further comments on an instantaneous asymptote for the 
case of fast reactions is useful here. If one assumes that the 
reaction is at equilibrium everywhere then the flux of the 
species diffusing into the system at the interface can be 
directly calculated without the need for solving the differen- 
tial equation. The classical paper of Olander [-8] is one 
example of such an approach and the resulting value of the 
gradient at the interface is known as the instantaneous 
reaction asymptote. The entire reaction is now assumed 
to take place right at the interface for reversible reaction or 
at a sharp reaction front for irreversible reactions. This 
asymptotic nature of the solution will be obtained in the 
limit of the reaction rate constant tending to infinity. In 
practice, however, the reaction takes place over a finite 
region of the domain and not at a sharp point. The deter- 

mination of the region in which the .reaction is taking place 
(the reaction zone) is of importance in the estimation of the 
kinetic rate constants for fast reactions by capiliary flow 
techniques or other related methods. This will need an 
accurate resolution of the NEBL; otherwise the estimated 
rate constant is likely to be in error. One example is the 
reaction of sulfur dioxide in water which is a fast reaction; 
this problem being of direct practical importance in the fate 
of pollutants in the atmosphere and in the acid rain issue. 
The reported rate constant for the kinetics of the reaction 
differ by a factor of eight [3, 9]. An early paper by 
Friedlander and Keller [10] also refer to the difficulties 
associated with the calculation of the structure of the 
reaction zone for fast reaction and the present work can be 
considered to provide additional information for diffusion- 
controlled fast reactions. 

Previous studies that account for fast reactions (but not 
at equilibrium at all points) have included perturbation 
analysis [3 ,5]  and very careful numerical shooting 
methods [11, 12]. Shooting methods can be used but have 
stability and convergence problems in general. The solution 
procedures based on finite difference or finite elements also 
are not straightforward and require an indirect .iteration 
procedure based on a posteriori estimation of the term Pl. 
This is an involved two-step procedure and could have con- 
vergence problems. Here a new direct one-step procedure is 
developed based on the boundary integral concepts. The 
boundary integral methods have several novel features 
which are useful to the problem under consideration. These 
are as follows: (1) The method leads to a fully integral for- 
mulation of the problem, thus avoiding the need for the 
approximation of the first and second derivatives in terms of 
the nodal values. (2) Both the concentration c and its 
derivative p are primary variables in this method and are, 
therefore, calculated as part of the solution technique here. 
Thus an estimated value of the unknown parameter Pl is 
available at each stage of calculation and, hence, a direct 
iterative procedure is possible as shown in this paper. 
Previous papers by the author [13, 14] have shown the use 
of this method in connection with nonlinear boundary value 
problems of the standard type; i.e., those which do not 
contain any undetermined parameters. This paper applies 
this technique to problems containing an undetermined 
coefficient as formulated in Section 1 of this paper. 

The scope of the remaining portion of this paper is as 
follows: In Section 3 the boundary integral method is 
developed in detail. Section 4 shows how one solves the 
resulting nonlinear algebraic-integral equations by the use 
of Newton-Raphson method. Section 5 shows the utility of 
the method by use of two case study problems. These study 
problems are chosen to be simple enough so that com- 
parison with previous approximate analytical solutions are 
possible. Further, the solution of more complex problems 
and problems involving multiple reactions (i.e., multiple dif- 
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ferential equations) using the current method are worthy of 
further research but is not addressed here as the emphasis of 
this paper is to develop a new numerical method and 
demonstrate its accuracy. 

Two weighting functions will be needed for each subinter- 
val (since we need to develop two equations for each 
element) and these are chosen as two independent solutions 
to Eq. (8). Thus the weighting functions GI and G2 are now 
specified as 

3. B O U N D A R Y  INTEGRAL REPRESENTATION 

The interval 0 to 1 for x is divided into a number of subin- 
tervals or elements just as in the finite element or finite dif- 
ference method. Consider N subintervals as the basis for the 
discretization. Then there are N +  1 nodes or positions 
at which the values of the dependent variable and its 
derivatives have to be calculated. Thus the unknowns are 

a I = x  

G 2 = l  

dG1 
with --~--x = 1 (10)  

with dG:=o (II) 
dx ' 

With these simplifications Eq. (9) for G = GI and G = G2 
can be written as 

P l ,  Cl ,  P 2 ,  c2,  ..., P N +  I, CN+ I,  

where p! refers to p at x = 0 representing node 1 as defined 
earlier while the subscript N +  1 refers to x = I. Thus we 
need to formulate 2 ( N +  1 ) equations for the evaluation of 
these quantities. The boundary conditions given by Eqs. (4) 
and (5) provide two such equations, leaving 2N equations 
to be developed by using boundary integral concepts. The 
details are discussed below. 

Consider a subinterval between x = a and x = b (a/> 0 
and b ~< 1). The solution proceeds by forming a weighted 
residual formulation of Eq. (1) with weighting functions G 
which are yet to be specified. Thus multiplying Eq. ( 1 ) by G 
and integrating with respect to x from a to b, we have 

b ;,h, G dx--sd2C dx= f,, Gf(c,x, pl) dx. (6) 

The first term on the LHS of Eq. (6) is now integrated by 
parts twice as 

L axA. ~ ,,+ c~__2dx. (7) 

The differential operator in the variable x in Eq. (7) (last 
term on RHS) can now be eliminated, provided one chooses 
weighting functions as the solution to the adjoint operator: 

d2G 
- - = 0 .  (8) dx 2 

With this choice for G, Eqs. (6) and (7) can be combined, 
leading to the boundary integral element formulation of the 
problem 

and 

b 
--ap,, + c~ + bph--Ch-- f~ xf(c, x, pl) dx =O (12) 

h 
-P ,  + Ph- f, f(c, x, Pl) dx=O, (13) 

where the subscripts a and b refer to the values (ofc  and p) 
at x = a and x = b respectively. 

Equations (!2) and (13) are the discretization equations 
for each element or the subinterval and are akin to the 
element level equations in the finite element method. The 
complete problem is then obtained by combining all the 
element level equations, together with the boundary condi- 
tions at x = 0 and x = 1. 

In addition, in order to handle terms containing c in 
Eqs. (12) and (13) we need to construct an approximating 
function for c for each subinterval. Note that in the current 
method the approximation for c is needed only for the 
numerical integration of the term containing f(c) and not 
for the discretization of the first and second derivatives. The 
approximating function is used only within the integrals and 
hence is smoothened, providing a high measure of accuracy. 
Since the information on both the concentration and its 
derivative is expected to be available at all the nodal points, 
we can construct a cubic osculating polynomial for c for 
each subinterval. Such an osculating polynomial is then 
defined as 

c=q~l(b-a)pa+q)2co+O3(b-a)pb+(94c b. (14) 

Further, the osculating polynomials ~b~ ( i=  1 to 4) are 
defined with respect to a local coordinate system r/, 

T dxj - L d x  j - f~  Gf(c,x, Pl) dx--O" (9) 
x - - a  (15) 

q - b - a  
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and are as follows: 

~1 = ~ -- 2q 2 + ~3 (16) 

if2 = 1 - 3q 2 + 2q 3 (17) 

~3 = __~2 + ~3 (18) 

~4 = 3q 2 --2~ 3. (19) 

It may be noted here that other approximating functions 
for c can be used instead of the cubic shape functions defined 
by ~bi. For instance, c can be expanded in terms of rational 
functions, trignometric or exponential functions, etc., if 
there are clear advantages for doing so. In this work a cubic 
polynomial is used for generality. 

This completes the boundary integral representation or 
"discretization" of the problem. Note that the unknown 
parameter p ~ is now a primary variable appearing naturally 
in the discretization scheme and is directly determined as a 
part of the overall solution strategy. All that one needs now 
is to solve the set of non-linear algebraic-integral equations 
by the most efficient method. In this paper, Newton- 
Raphson interation scheme is proposed and implemented. 

4. NEWTON-RAPHSON METHOD 

In this method it is necessary to construct a Jacobian 
matrix for the system. The Jacobian for the boundary condi- 
tions can be easily constructed: (1) by differentiating Eq. (4) 
with respect to Pl and c~ for x = 0 and (2) by differentiating 
Eq. (5) with respect to PN+I and CN+I for x =  1. The 
Jacobian terms corresponding to the element level 
equations can be constructed by differentiating under the 
integral sign using the chain rule. The details will be 
presented below: 

Let the element level equations be represented by F~ = 0 
and F 2 = 0  corresponding to Eqs. (12) and (13). The 
element level variables are p~, Ca, Pb, and cb. Further, all the 
element level equations contain the variable pa in the 
integral term (indirectly due to the dependency o f f  on p~). 
Taking these features into consideration the element level 
Newton-Raphson formulation is therefore given by the pair 
of equations, 

Hlo Ap l  q- H l l  A p ~ +  H12 Ac a 

q- HI3 Apb q- H14 Acb = - F 1  

and 

H2o Ap1 + H21 Apa + H22 Ac a 

-k- H23 Apb + H24 Ac b = -F2 ,  

where Ap1 , Ac~, Ap2 , etc. are the corrections to px, Cl, P2, 

etc. to obtain the improved values for the next iteration. The 
coefficients of the Jacobian are given by the following 
expressions: 

HI° = ~Pl = - X dx (22) 

0 F  2 f f  Of 
Ha° - 8p~ - ~ dx (23) 

H,1 - Op a - .a - x (b,(b - a) dx (24) 

OF1_ 1 - f i x  Of (25) H12 - OC a -~C d?2 dx 

H13 - @b = b - x ~b3(b - a) dx (26) 

0 F  1 (.b Of 
H14 - 1 - / (27) - - -  Jo x~ (~4dx  

O'c b 

921 -- 0p~ -- 1 --  ~l(b - a) dx  (28) 

OF2 fb Of ~2dx (29) 
H = -  8Ca ~ 8C 

O F 2 - 1 -  f f  ~ (b3(b- a) dx (30) H23 - Op b 

0 F  2 (.b 0 f  , 
H24 = 63Cb = -- Ja | ~ ~4 dX. (31) 

The Jacobian elements listed above are constructed using 
the chain rule, 

of Of Oc 
0 ,  - 0c 0 ,  

(32) 

with • representing any variable (Pa, ca, etc.). 
The solution procedure is then as follows: 

1. Assign trial values for the dependent variables ci at 
the nodal points xi and estimate the trial values of the 
gradient at these points. 

(20) 2. Evaluate the coefficients of the Jacobian matrix and 
the functions F1 and F 2 for all the elements using the current 
values of ci and p~. (The various integrals appearing in the 
Jacobian terms were evaluated in this work using a 10-point 
Gaussian quadrature.) 

(21) 3. Assemble the element level Jacobians together with 
the Jacobians for the boundary conditions into an overall 
global matrix. 



NUMERICAL SOLUTION FOR BOUNDARY VALUE PROBLEMS 67 

TABLE I 

Global Matrix of the Final Assembled Equations 
Shown Here for N = 4 for Illustration 

Variables 

dPl dcl zlP2 Ac2 ~JP3 AC3 ZIP4 z~C4 AP5 Z~C5 RHS 

B. C a t x = 0  a I a 2 0 0 0 0 0 0 0 0 -Eq .  (4) 

Element 1, 1 Hlo HI2 H13 Ha4 0 0 0 0 0 0 -FI(1)  
+ H n  

2 H20 H22 H23 H24 0 0 0 0 0 0 -F2(I  ) 
+ H2I 

Element 2, 1 Hlo 0 H n HI2 HI3 HI4 0 0 0 0 -F1(2 ) 
2 H20 0 921 H22 H23 H24 0 0 0 0 -F2(2 ) 

Element 3, 1 Hlo 0 0 0 HII H12 HI3 H14 0 0 -F1(3 ) 
2 H20 0 0 0 H21 H22 H23 H24 0 0 -F2(3 ) 

Element 4, 1 Hlo 0 0 0 0 0 HII HI2 HI3 HI4 -F1(4 ) 
2 H2o 0 0 0 0 0 H2a H22 H23 H24 -F2(4) 

B. C a t x = l  0 0 0 0 0 0 0 0 b I b 2 -Eq . (5 )  

Note. Hlo, HH, H21, etc., are different for each element. 

The problem can be modeled by the set of differential 
equations, 

d 2 C  
D c  ~y2 = kCB, (33) 

d2B 
D B ~yz  = kCB, (34) 

where D is the diffusion coefficient of the subscripted species 
and y is a distance parameter measured from the interface. 

The following boundary conditions will be used here: At 
the 

gas-liquid interface, y = 0, C = C*, dB/dy = 0 (35) 

4. Solve this matrix using any linear equation solver for 
the unknowns: Apl,  Acl , Ap2, Ac e .... ,3CN+1. 

5. Use these values to update the primary variables, ci 
and pi, at the nodes, for the next iteration. 

6. Continue the process until convergence is obtained. 

It may be useful to discuss briefly here the structure of the 
global matrix obtained by assembling the Newton- 
Raphson equations. This matrix is very sparse as shown in 
Table I. For an efficient solution of the resulting linear 
equations the sparsity of the matrix should be effectively 
utilized. 

and 

end of diffusion film, y = 6 ,  C = 0 ,  B = B I .  (36) 

Here 6 represents the thickness of the diffusion boundary 
layer or the Nernst's diffusion film, C* is the saturation 
solubility of the gas at the interface, B~ is the concentration 
of the liquid phase reactant in the bulk liquid. The boundary 
condition for B in Eq. (35) is valid for a non-volatile liquid 
phase reactant. 

Using the following dimensionless variables 

C B y 
c = - -  b * = - -  x =  

C*' Bt' 6' 

the equations can be put into a dimensionless form, 

d2c 
d x  2 = M c b *  (37) 

d2b * 
dx 2 - qMcb*, (38) 

5. CASE STUDIES: GAS ABSORPTION PROBLEMS 
where M is the ratio of the time constant for diffusion to the 
time constant for reaction: 

5.1. Second-Order Irreversible Reaction 

Consider a gas C absorbing and reacting into a liquid 
containing a dissolved reactant B according to a reaction 
scheme represented by 

C + B ~ Products 

and 

M kBt 6 2 
=~cc (39) 

C*D c 
q -  BIDB" (40) 

with the rate of chemical reaction represented by an 
irreversible second-order kinetics: 

Rate = kCB. 

Equations (37) and (38) can be combined to yield 

d2b * dZc 

d x  2 - q ~ 2 "  
(41) 
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Equation (41) can be integrated with the above boundary 
conditions to give an equation relating b* to c, 

b* = 1 + q c - q p l ( x -  1). (42) 

Substituting for b* in Eq. (37) yields our equation 
containing an undetermined parameter, 

d2c 
~ x  2 = M c [ 1  + qc - qp~(x - 1)]. (43) 

The boundary conditions in terms of the dimensionless 
variable c can be expressed now in the form similar to 
Eqs. (4) and (5). Thus now 

al = 0, a2 = 1, a 3 = 1 

bl =0 ,  b2 = 1, b 3 = 0. 

The above discussion shows an illustrative and practical 
problem where an undetermined coefficient appears in the 
differential equation. Many other complex cases will be 
governed by a similar type of differential equation and 
hence the present work provides an important  contribution 
in the numerical solution of such problems. The numerical 
procedure developed in this work will now be tested on this 
problem and the results compared to the numerical solu- 
tions to this problem available in the literature (DeSantiago 
and Farina [ 11 ], Sen [ 12 ]). Further, approximate analy- 
tical solutions of sufficient accuracy for engineering design 
purposes are available for this problem and these are 
summarized in the excellent book by Cussler [-15]. This 
provides an additional method for the comparison of the 
accuracy of the numerical method. 

The first case studied was for x / M - -  10 and q =0.1. The 
starting profiles for the concentration was unity at all the 
nodal points and hence the assumed value for Pl was zero. 
Five elements ( N = 5 )  were used and the nodes were 
unevenly spaced at x = 0.0, 0.01, 0.05, 0.1, 0.3, 0.5, and 1.0. 
The iterations converged in five trials within five-digit 
accuracy. The approach to the converged value of the 
parameter Pl is shown in Table II. It is seen that the system 
is rapidly convergent with the value for Pl approaching 
within 1.6 % of the final value in just two iterations. Further 
results were generated for x / -M= 100 and 1000 for various 
values of q and the results are shown in Table III. For  the 

case of ~ = 100, six elements were used rather than five 
due to the expected steepness of the profiles. The additional 
node was placed at x = 0.005. Similarly for ~ = 1000, an 
extra node was placed at x = 0.001. The results are in exact 
agreement with the earlier numerical studies (11, 12). 
Table I I I  also presents some results using N =  12 for 
x / ~ =  100 and N =  14 for ~ =  1000. The mesh 
refinements improves the value of pl by only about 1% 

T A B L E  II  

Approach to Converged Solution for Pl for the Case of 
M = 100, q = 0.1 for Irreversible Second-Order Reaction 

Iteration Value of pl 

0 0.0000 
1 -5.4854 
2 -6.5717 
3 -6.6816 
4 -6.6829 
5 -6.6829 

showing that discretization requirements for the method are 
not very tight. This is due to the integral nature of the 
problem. Further the computational efforts are minimum, 
each iteration taking about  10 s on an ordinary IBM-PC. 
The program developed did not use the sparse nature of the 
matrix; if this is done the computational  efficiency would 
improve further. 

For  large values of ~ and moderate values of q the 
equilibrium assumption has been used in prior studies (see, 
for instance, 1, 2, 15). For an irreversible reaction the reac- 
tion is then confined to a reaction plane, since the species C 
and B cannot coexist in the liquid for very rapid reaction. 
The results obtained by using this assuption are generally 
known as the instantaneous reaction asymptote as already 
discussed in Section 2. For this case the asymptotic value of 
Pl is given by setting b* = 0 at x = 0 in Eq. (42). Thus 

pl(Asymptot ic  x / M  ~ oo ) = _ 1._ +____qq (44) 
q 

The location of the reaction plane x* at which the all the 
reaction is assumed occur in the asymptotic model is then 

T A B L E  III  

Gradient at the Diffusing Surface for a 
Second-Order Irreversible Reaction 

N q Pl 

10 5 0.001 -9.94 
0.01 - 9.56 
0.1 -6.68 
0.5 - 2.90 
1.0 - 1.99 

100 6 0.001 - 94.38 
0.1 - 10.94 
1.0 - 2.00 

12 0.001 -95.09 
1000 7 0.001 -- 605.67 

1.0 - 2.00 
14 0.001 -616.96 
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given by the intersection of the X-axis with the line of slope 
equal to pl and passing through (0, 1), 

x * -  q (45) 
l + q '  

In order to compare the present numerical results with this 
asymptotic approach, a case of x / M  = 1000 and q = 1.0 can 
be chosen. The earlier studies have shown that the instan- 
taneous asymptote is a good approximation for this case. 
Here the numerical value of p~ was found to be -2.0,  in 
exact agreement with the asymptotic value. Detailed 
concentration profiles for this case are plotted in Fig. 1. 
It is seen that the predicted concentration profiles are 
in excellent agreement with the instantaneous reaction 
asymptote but numerical results show that the concentra- 
tion does not drop to zero sharply at x =  x* but decays 
smoothly to zero near that point. The concentration 
gradient also is not discontinuous in the numerical solution 
in contrast to that predicted by the instantaneous 
asymptotic solution. 

5.2. First-Order Reversible Reaction 

Consider now a case of gas absorption with a first-order 
reversible reaction represented by 

C,-~-B 

where k is the first-order rate constant and K is the 
equilibrium constant for the reaction. 

This case study was chosen for two reasons: (1) A simple 
analytical solution is available for comparison purposes; 
(2) The problem is representative of the class of diffusion- 
reaction problems with a boundary layer of constant 
gradient type as opposed to conventional problems of 
constant concentration type. 

The problem can be modeled by 

d2C d2B 
Dc  ~y2 = k ( C -  B/K) = - D e  dy 2 • (46) 

The boundary conditions will be assumed to be the same as 
given by Eqs. (35) and (36) with the modification that at 
y = 5, C =  Cz. If one focuses attention on fast reactions 
which are complete in the diffusion film itself then the 
equilibrium requirement dictates that 

BI = KCt (47) 

and this condition also will be used here. Further, for sim- 
plicity, equal diffusion coefficients for C and B will be used. 
Thus Dc = DB. Integration of the first and the last pair of 
equations in (46) and the use of the boundary conditions 
listed above provide a relationship for B in terms of C. This 
can be expressed in terms of dimensionless concentration as: 

with the rate given b* =cl(1 + K ) - c  + p ~ ( x -  1), (48) 

(D 

1 
\ 

\ 
\ 

\ 

0.8 \ 
\ 

k 

0.6 

0.4 

0.2 

0 i 

0.1 

Rate = k(C - B/K), 

\ 

i l  
\ 

\ 
\ 

\ 

\ 
\ 

\ 

\ 
N 

k 
\ 

i i J • : - 

0.2 0.3 0.4 0.5 0.6 0.7 

where b* is now defined as B/C*. 
Equation (48), when substituted into the first pair 

of equations in (46) yields the differential equation 
with the unknown coefficient. The equation in terms of 
dimensionless variables then is 

d 2 c  

d x - - ~ = f l Z [ c - c , - p l ( x -  1)/(1 + K ) ] ,  (49) 

where 

and M now is given by kSZ/Dc . 
The equation can be solved analytically to yield the 

following equations for the concentration distribution and 
the gradient at the gas-liquid interface: 

Pl ) sinh[fi(1-x)] 
c = c t +  1 - c l+ K - - ~  sinhfl 

X 

F I G .  1. Concen t r a t i on  profiles as a funct ion of d is tance  pa ramete r  for 

= 1000 and  q = 1.0. Solid poin ts  are the numer ica l  results  while  the 

dashed  l ine shows the profiles co r re spond ing  to the in s t an taneous  react ion 

asympto te ;  N = 7. 

+ P~ ( x - l )  (51) 
K + I  

( 1 - cl)(1 + K) 
Pl = 1 + (K/fl) tanh #" (52) 



70 P. A. RAMACHANDRAN 

T A B L E  IV 

Gradient at the Diffusing Surface for a Reversible 
First-Order Reaction 

c t K Pl 

10 0.5 0.1 -0.5483 
1.0 -9.9339 

10.0 -2.8153 
10 0.0 0.1 - 1.0966 

1.0 - 1.8679 
10.0 - 5.6307 

100 0.0 0.1 - 1.09966 
1.0 - 1.9859 

10.0 - 10.0414 
1000 0.0 0.1 - 1.09996 

1.0 - 1.9986 
10.0 - 10.8951 

100.0 -91.782 

Note. N= 13. 

These equat ions  can be used to compare  the numer ica l  
results ob ta ined  using the p rocedure  descr ibed in this work.  

The numer ica l  so lu t ions  were genera ted  for var ious  
values of ,,f-M, cz, and  K and c o m p a r e d  with the analyt ica l  
solut ion.  The  results are presented  in Table  IV for the 
values of Pl for var ious  combina t ions  of the parameters .  
These results were genera ted  with N =  13 with the noda l  
points  shown in Table  V. The numer ica l  results are in very 
close agreement  with the analyt ica l  solut ion,  the er rors  in 
the value of p l  being only 1 to 2 %. It  may  be noted  here that  
only  two i tera t ions  were needed to ob ta in  convergence in 
view of the quasi - l inear  na ture  of  the rate  term. 

F o r  large values of M the so lu t ion  is of a b o u n d a r y  layer 
type. The  b o u n d a r y  layer  exists in a region close to x = 0 

T A B L E  V 

Detailed Concentration (c) and Gradient (p) Profiles for a 
Reversible First-Order Case 

0.95 

0.9 

0.85 

0.8 

L 
"---..m 

I i I I 

0 0.01 0.02 0.03 0.04 

X 

for c for x/M = 1000 and K= 100. for FIG. 2. Concentration profiles 
a reversible reaction; N = 13. Solid line and points are the numerical results 
while the dashed line shows the profiles corresponding to the outer 
solution. 

where bo th  c a n d p  are rapidly  changing.  F o r  the region out-  
side the b o u n d a r y  layer,  the na ture  of the solut ion can be 
examined  by equat ing  the term under  the square b racke t  in 
Eq. (49) to zero. Thus  the outer  solut ion in the region,  
where the concen t ra t ion  is not  rap id ly  changing,  is given by 

C ° - -  C 1 - -  P l ( X  - -  1 ) / ( 1  + K )  = 0,  (53) 

where the superscr ipt  0 is used to indicate  that  this is the 
outer  solut ion,  val id outs ide  the b o u n d a r y  layer. The 
grad ien t  of c in the outer  region deno ted  as p0 is ob ta ined  by 
differentiat ing Eq. (53), 

x c p 

0.0 1.0000 -- 91.782 
0.001 0.9422 - 33.266 
0.005 0.9058 - 2.327 
0.01 0.8997 -0.952 
0.03 0.8815 -0.915 
0.05 0.8623 - 0.909 
0.075 0.8406 -0.909 
0.1 0.8178 - 0.909 
0.2 0.7269 -0.909 
0.3 0.6361 -0.909 
0.4 0.5452 - 0.909 
0.5 0.4543 - 0.909 
0.7 0.2726 - 0.909 
1.0 0.0000 - 0.909 

Note. M=106 ,K=100. 

pO = p l / ( K +  1). (54) 

Equa t ion  (54) shows tha t  the gradient  is cons tan t  in the 
outer  region and hence the outer  solut ion is of cons tan t  
gradient  type and  not  one with a cons tant  value of c. This 
was po in ted  out  in an earl ier  pape r  by Melvil le  and  
Yortsos  [ 5 ]  as well. In  o rder  to ascer ta in  whether  the 
numer ica l  solut ions  have the same features, it is a p p r o p r i a t e  
to present  the deta i led c and  p profiles as a funct ion of x for 
one such case. This is shown in Table  V for M = 1 x 106 and  
K =  100. A region of cons tan t  p is ob ta ined  for the large par t  
of  the d o m a i n  (for values of x greater  than  0.01, which is 
also the app rox ima te  thickness of the b o u n d a r y  layer).  The 
value of p shown in Table  V also matches  exact ly the 
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analytical value given by Eq. (54). Thus the current method 
gives accurate solutions, both within the boundary  layer as 
well as for the region outside the boundary  layer. The results 
of the solution for this case are shown in Fig. 2. Note  that  
the numerical results show the correct boundary  layer 
behavior  and, in addition, predict the exact results for the 
outer  region as well. 

6. CLOSING REMARKS 

The above case studies illustrate that  the numerical pro-  
cedure developed in this work is an accurate, efficient, and 
robust  method for the solution of boundary  value problems 
containing an undetermined parameter.  Application to 
problems with a more  complex kinetics and to systems 
governed by multiple differential equations should prove to 
be useful for practical applications and should be addressed 
in future studies. 
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